前言
这是一个国外学校的比赛,密码质量很高
题目
ECC
Can you get the secret key from the following two signed messages?
1st Message: “The secp256r1 curve was used.”
2nd Message: “k value may have been re-used.”
1st Signature r value: 91684750294663587590699225454580710947373104789074350179443937301009206290695
1st Signature s value: 8734396013686485452502025686012376394264288962663555711176194873788392352477
2nd Signature r value: 91684750294663587590699225454580710947373104789074350179443937301009206290695
2nd Signature s value: 96254287552668750588265978919231985627964457792323178870952715849103024292631
The flag is the secret key used to sign the messages. It will be in the flag format.
task
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
from Crypto.Util.number import bytes_to_long, long_to_bytes
from hashlib import sha256
from secret import sign
message1 = "The secp256r1 curve was used."
message2 = "k value may have been re-used."
message1 = bytes_to_long(sha256(message1.encode()).digest())
message2 = bytes_to_long(sha256(message2.encode()).digest())
r1, s1 = sign(message1)
r2, s2 = sign(message2)
print(f"r1: {r1}, s1: {s1}")
print(f"r2: {r2}, s2: {s2}")
|
很简单的ECDSA,直接计算即可
exp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
from hashlib import sha256
from Crypto.Util.number import*
n = 115792089210356248762697446949407573529996955224135760342422259061068512044369
message1 = "The secp256r1 curve was used."
message2 = "k value may have been re-used."
r = 91684750294663587590699225454580710947373104789074350179443937301009206290695
s1 = 8734396013686485452502025686012376394264288962663555711176194873788392352477
s2 = 96254287552668750588265978919231985627964457792323178870952715849103024292631
H_m1 = bytes_to_long(sha256(message1.encode()).digest())
H_m2 = bytes_to_long(sha256(message2.encode()).digest())
print(f"H(m1) = {H_m1}")
print(f"H(m2) = {H_m2}")
diff_h = (H_m1 - H_m2) % n
diff_s = (s1 - s2) % n
inv_diff_s = inverse(diff_s, n)
k = (diff_h * inv_diff_s) % n
print(f"k = {k}")
r_inv = inverse(r, n)
d = ((s1 * k - H_m1) % n) * r_inv % n
print(f"Private key d = {d}")
k_inv = inverse(k, n)
computed_s1 = (k_inv * (H_m1 + d * r)) % n
computed_s2 = (k_inv * (H_m2 + d * r)) % n
print(long_to_bytes(d))
|
Mod
task
1
2
3
4
5
6
|
import re
with open("flag.txt") as f:
flag = f.read()
assert re.fullmatch(r"gigem\{[a-z0-9_]{38}\}",flag)
flag_num = int.from_bytes(flag.encode(), 'big')
assert flag_num % 114093090821120352479644063983906458923779848139997892783140659734927967458173 == 58809011802516045741268578327158509054400633329629779038362406616616290661238
|
一个很像小鸡块在nss的dlc出的题,但是更加复杂,鸡块的题大部分是在同一个范围,比如07,Nss这种有规律性的,或者是可以用线性表达的,但是这个题不行,我尝试了只用09的数字去求解flag,可以规约出来一组,但是并不是目标答案
官方预期解法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
import string
import re
from sage.all import *
chrs = (string.ascii_letters + string.digits + "_").encode()
avg = sorted(chrs)[len(chrs) // 2] - 1
print(f"{avg = }")
print([x - avg for x in sorted(chrs)]) # within [-37, 37]
flaglen = 38
M = 114093090821120352479644063983906458923779848139997892783140659734927967458173
C = int.from_bytes(b"gigem{" + b"\x00" * flaglen + b"}", "big")
rem = 58809011802516045741268578327158509054400633329629779038362406616616290661238
C -= rem
P = PolynomialRing(ZZ, "ap", flaglen)
aps = P.gens()
aa = [ap + avg for ap in aps]
f = C + sum([a * 256**i for i, a in enumerate(aa)]) * 256
print(f)
L = matrix(f.coefficients()).T
L = block_matrix([[M, 0], [L, 1]])
bounds = [1] + [37] * flaglen + [1]
scale = [2**20 // i for i in bounds]
Q = diagonal_matrix(scale)
L *= Q
L = L.BKZ(block_size=25)
L /= Q
# not good enough
# for row in L:
# if row[-1] < 0:
# row = -row
# if row[0] == 0 and row[-1] == 1:
# print(row)
# print(f(*row[1:-1]) % M == 0)
# aa = [x + avg for x in row[1:-1]][::-1]
# flag = b"gigem{" + bytes(aa) + b"}"
#
# assert int.from_bytes(flag, "big") % M == rem
# print(flag)
# exit()
from fpylll import IntegerMatrix, LLL
from fpylll.fplll.gso import MatGSO
from fpylll.fplll.enumeration import Enumeration
sols = []
L[:, 0] *= 2**10
A = IntegerMatrix.from_matrix(L.change_ring(ZZ))
LLL.reduction(A)
MG = MatGSO(A)
MG.update_gso()
sol_cnt = 10000
enum = Enumeration(MG, sol_cnt)
size = int(L.nrows())
bound = 37
answers = enum.enumerate(0, size, (size * bound**2), 0, pruning=None)
for _, s in answers:
v = IntegerMatrix.from_iterable(1, A.nrows, map(int, s))
sv = v * A
if abs(sv[0, size - 1]) <= bound and sv[0, -1] in (-1, 1):
print(sv)
neg = sv[0, -1]
sol = [neg * sv[0, i + 1] for i in range(flaglen)]
assert f(*sol) % M == 0
aa = [x + avg for x in sol][::-1]
try:
flag = b"gigem{" + bytes(aa) + b"}"
except:
continue
assert int.from_bytes(flag, "big") % M == rem
print(flag)
try:
if re.fullmatch(r"gigem{\w{38}}", flag.decode()):
print("FOUND")
break
except UnicodeDecodeError:
pass
|
赛后我用另一个赛题的wp中的方法运行三十分钟出来了,
链接https://connor-mccartney.github.io/cryptography/other/onelinecrypto-SeeTF-2023
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
from Crypto.Util.number import *
from sage.all import *
import re
def lattice_enumeration(L, bound, sol_cnt=1_000_000):
from fpylll import IntegerMatrix, LLL
from fpylll.fplll.gso import MatGSO
from fpylll.fplll.enumeration import Enumeration
A = IntegerMatrix.from_matrix(L)
LLL.reduction(A)
M_mat = MatGSO(A)
M_mat.update_gso()
size = int(L.nrows())
enum = Enumeration(M_mat, sol_cnt)
answers = enum.enumerate(0, size, (size * bound**2), 0, pruning=None)
print(f'Got {len(answers)} answers')
for _, s in answers:
# print(len(answers))
v = IntegerMatrix.from_iterable(1, A.nrows, map(int, s))
sv = v * A
if abs(sv[0, size - 1]) <= bound:
yield sv[0]
M_val = 114093090821120352479644063983906458923779848139997892783140659734927967458173
R_val = 58809011802516045741268578327158509054400633329629779038362406616616290661238
C = bytes_to_long(b"gigem{" + bytes(38) + b"}")
a = 85
dim = 38
M_lattice = (identity_matrix(dim)
.augment(vector([0]*dim))
.augment(vector([256**i for i in range(dim, 0, -1)]))
.stack(vector([-a]*dim + [1, C - R_val]))
.stack(vector([0]*dim + [0, -M_val]))
)
found = False
for row in lattice_enumeration(M_lattice.change_ring(ZZ), 37, sol_cnt=500_000):
for sign in [1, -1]:
r = [sign * x for x in row]
if r[-2:] != [1, 0]:
continue
try:
candidate = b"gigem{" + bytes([x + a for x in r[:-2]]) + b"}"
if re.fullmatch(r"[a-z0-9_]{38}", candidate.decode()[6:-1]):
if int.from_bytes(candidate, 'big') % M_val == R_val:
found = True
print(candidate)
break
except Exception:
continue
if found:
break
|
Smelter
原附件有点大,不放了,个人感觉没mod恶心
exp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
SHA256_OID = (2, 16, 840, 1, 101, 3, 4, 2, 1)
class AlgorithmIdentifier(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('algorithm', univ.ObjectIdentifier()),
namedtype.NamedType('parameters', univ.Null())
)
class DigestInfo(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('digestAlgorithm', AlgorithmIdentifier()),
namedtype.NamedType('digest', univ.OctetString())
)
def get_digestinfo(hash_bytes):
alg = AlgorithmIdentifier()
alg['algorithm'] = SHA256_OID
alg['parameters'] = univ.Null()
di = DigestInfo()
di['digestAlgorithm'] = alg
di['digest'] = hash_bytes
return encoder.encode(di)
def integer_cube_root(n: int) -> int:
low = 0
high = 1 << ((n.bit_length() + 2) // 3)
while low < high:
mid = (low + high) // 2
if mid**3 < n:
low = mid + 1
else:
high = mid
if low**3 > n:
low -= 1
return low
# The Forgery Routin
def forge_signature():
message = b"admin"
h = hashlib.sha256(message).digest()
t = get_digestinfo(h)
minimal_prefix = b"\x00\x01\xff\x00" + t
target_block = minimal_prefix.ljust(256, b"\x00")
target_int = int.from_bytes(target_block, byteorder="big")
s = integer_cube_root(target_int)
while True:
candidate = s**3
candidate_bytes = candidate.to_bytes(256, byteorder="big")
try:
data_section = candidate_bytes[3:]
sep_index = data_section.index(b"\x00")
recovered = data_section[sep_index+1:]
except Exception:
recovered = b""
if candidate_bytes.startswith(b"\x00\x01\xff\x00") and recovered.startswith(t):
break
s += 1
forged_sig = s.to_bytes(256, byteorder="big")
print("forged sing (b64):")
print(base64.b64encode(forged_sig).decode())
return forged_sig
if __name__ == "__main__":
forge_signature()
|
RC4
task
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
from Crypto.Cipher import ARC4
import os
from string import printable
from random import choices
IV = ''.join(choices(printable,k=32)).encode()
for i in range(96):
nonce = input("Give me a prefix (hex): ")
try:
nonce = bytes.fromhex(nonce)
except:
print("Make sure to send in hex.")
exit()
if len(nonce) + len(IV) > 256:
print("Your prefix is too long.")
exit()
try:
cipher = ARC4.new(nonce + IV)
except:
print("Could not create the cipher.")
exit()
pt = b"\0"
ct = cipher.encrypt(pt)
print(f"Your lucky number is {ord(ct)}")
guess = input("What was the IV(hex): ")
try:
guess = bytes.fromhex(guess)
except:
print("Make sure to send your guess for the IV in hex.")
exit()
if IV == guess:
with open("flag.txt","r") as f:
FLAG = f.read()
print(FLAG)
else:
print(f"WRONG! IV was {IV.hex()}")
|
1
2
3
4
5
|
from pwn import *
context.log_level = "debug"
io = remote("tamuctf.com", 443, ssl=True, sni="tamuctf_rc4-prefix")
io.interactive(prompt="")
|
有一说一,不是特别熟,这里借鉴别的佬的代码,回头学会了单独写吧
exp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
from Crypto.Cipher import ARC4
import random
from pwn import *
from collections import Counter
def key_schedule(key):
S = list(range(256))
j = 0
for i in range(len(key)):
j = (j + S[i] + key[i]) % 256
S[i], S[j] = S[j], S[i]
return S
def get_prefix(ind, known):
while True:
prefix = random.randbytes(256-32)
key = prefix + known
S = key_schedule(key)
if (S[1] + S[S[1]])%256 == ind:
return prefix
def oracle(prefix):
io.sendline(prefix.hex())
io.recvuntil(b'number is ')
return int(io.recvline(keepends=False))
def Most_Common(lst):
data = Counter(lst)
return data.most_common(1)[0][0]
key = b'a'*32
known_key = b''
#context.log_level = "debug"
io = remote("tamuctf.com", 443, ssl=True, sni="tamuctf_rc4-prefix")
#io = process("python3 ./RC4_prefix.py", shell=True)
for i in range(32):
results = []
for _ in range(3):
prefix = get_prefix(256-32 + i, known_key)
leak = oracle(prefix)
for j in range(256):
S = key_schedule(prefix + known_key + bytes([j]))
if S[(S[1] + S[S[1]])%256] == leak:
results.append(j)
known_key += bytes([Most_Common(results)])
print(known_key)
print(known_key.hex())
io.sendline(known_key.hex())
io.interactive()
|
总结
自己好菜啊啊啊啊啊啊啊啊啊啊